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Macromolecular X-ray crystallography is routinely applied to

understand biological processes at a molecular level. How-

ever, significant time and effort are still required to solve and

complete many of these structures because of the need for

manual interpretation of complex numerical data using many

software packages and the repeated use of interactive three-

dimensional graphics. PHENIX has been developed to

provide a comprehensive system for macromolecular crystallo-

graphic structure solution with an emphasis on the automation

of all procedures. This has relied on the development of

algorithms that minimize or eliminate subjective input, the

development of algorithms that automate procedures that are

traditionally performed by hand and, finally, the development

of a framework that allows a tight integration between the

algorithms.
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1. Foundations

1.1. PHENIX architecture

The PHENIX (Adams et al., 2002) architecture is designed

from the ground up as a hybrid system of tightly integrated

interpreted (‘scripted’) and compiled software modules. A mix

of scripted and compiled components is invariably found in

all major successful crystallographic packages, but often the

scripting is added as an afterthought in an ad hoc fashion using

tools that predate the object-oriented programming era. While

such ad hoc systems are quickly established, they tend to

become a severe maintenance burden as they grow. In addi-

tion, users are often forced into many time-consuming routine

tasks such as manually converting file formats. In PHENIX,

the scripting layer is the heart of the system. With only a few

exceptions, all major functionality is implemented as modules

that are exclusively accessed via the scripting interfaces. The

object-oriented Python scripting language (Lutz & Ascher,

1999) is used for this purpose. In about two decades, a large

developer/user community has produced millions of lines of

highly uniform, interoperable, mature and openly available

sources covering all aspects of programming ranging from

simple file handling to highly sophisticated network commu-

nication and fully featured cross-platform graphical interfaces.

Embedding crystallographic methods into this environment

enables an unprecedented degree of automation, stability and

portability. By design, the object-oriented programming

model fosters shared collaborative development by multiple

groups. It is routine practice to hierarchically recombine

modules written by different groups into ever more complex

procedures that appear uniform from the outside. A more

detailed overview of the key software technology leading to all



these advances, presented in the context of crystallography,

can be found in Grosse-Kunstleve et al. (2002).

In addition to the advantages outlined in the previous

paragraph, the scripting language is generally most efficient

for the rapid development of new algorithms. However, run-

time performance considerations often dictate that numeri-

cally intensive calculations are eventually implemented in a

compiled language. The first choice of a compiled language is

of course to reuse the same language environment as used for

the scripting language itself, which is a C/C++ environment.

Not only is this the mainstream software environment on all

major platforms used today, but with probably hundreds of

millions of lines of C/C++ sources in existence it is an envir-

onment that is virtually guaranteed to thrive in the long term.

An in-depth discussion of the combined use of Python and

C++ can be found in Grosse-Kunstleve et al. (2002) and

Abrahams & Grosse-Kunstleve (2003). This model is used

throughout the PHENIX system.

1.2. Graphical user interface

A new graphical user interface (GUI) for PHENIX was

introduced in version 1.4. It uses the open-source wxPython

toolkit, which provides a ‘native’ look on each operating

system. Development has focused on providing interfaces

around the existing command-line programs with minimal

modification, using the same underlying configuration system

(libtbx.phil) as used by most PHENIX programs as a template

to automatically generate controls. Because these programs

are implemented primarily as Python modules, complex data

including models, reflections and other viewable data may be

exchanged with the GUI without resorting to parsing log files.

The current PHENIX release (version 1.5) includes GUIs for

phenix.refine (Afonine et al., 2005), phenix.xtriage (Zwart et

al., 2005), the AutoSol (Terwilliger et al., 2009), AutoBuild

(Terwilliger, Grosse-Kunstleve, Afonine, Moriarty, Adams et

al., 2008) and LigandFit (Terwilliger et al., 2006) wizards, the

restraints editor REEL, all of the validation tools and several

utilities for creating and manipulating maps and reflection

files. More recent builds of PHENIX contain a new GUI for

the AutoMR wizard and future releases will include a new

interface for Phaser (McCoy et al., 2007).

Intrinsically graphical data is visualized with embedded

graphs (using the free matplotlib Python library) or a simple

OpenGL viewer. This simplifies the most complex parameters,

such as atom selections in phenix.refine, which can be visual-

ized or picked interactively with the built-in viewer. The GUI

also serves as a platform for additional automation and user

customization. Similarly to the CCP4 interface (CCP4i;

Potterton et al., 2003), PHENIX manages data and task

history for separate user-defined projects. Default parameters

and input files can be specified for each project; for instance,

the generation of ligand restraints from the phenix.refine GUI

gives the user the option of automatically loading these

restraints in future runs.

The popularity of Python as a scientific programming

language has led to its use in many other structural-biology

applications, especially molecular-graphics software. The

PHENIX GUI includes extension modules for the modeling

programs Coot (Emsley & Cowtan, 2004) and PyMOL

(DeLano, 2002), both of which are controlled remotely from

PHENIX using the XML-RPC protocol. This allows the

interfaces to integrate seamlessly; any model or map in

PHENIX can be automatically opened in Coot with a single

click. In programs that iteratively rebuild or refine structures,

such as AutoBuild and phenix.refine, the current model and

maps will be continually updated in Coot and/or PyMOL as

soon as they are available. In the validation utilities, clicking

on any atom or residue flagged for poor statistics will recentre

the graphics windows on that atom. Remote control of the

PHENIX GUI is also simple using the same protocol and

simple extensions to the Coot interface provide direct

launching of phenix.refine with a model pre-loaded.

2. Analysis of experimental data

PHENIX has a range of tools for the analysis, validation and

manipulation of X-ray diffraction data. A comprehensive tool

for analyzing X-ray diffraction data is phenix.xtriage (Zwart et

al., 2005), which carries out tests ranging from space-group

determination and detection of twinning to detection of

anomalous signal. These tests provide the user and the various

wizards with a set of statistics that characterize a data set. For

analysis of twinning, phenix.xtriage consolidates a number of

statistics to provide a balanced verdict of possible symmetry

and twin-related issues with the data. Phenix.xtriage provides

the user with feedback on the overall characteristics of the

data. Routine usage of phenix.xtriage during or immediately

after data collection has resulted in the timely discovery of

twinning or other issues (Flynn et al., 2007; Kostelecky et al.,

2009). Detection of these idiosyncrasies in the data typically

reduces the overall effort in a successful structure determi-

nation.

A likelihood-based estimation of the overall anisotropic

scale factor is performed using the likelihood formalism

described by Popov & Bourenkov (2003). Database-derived

standard Wilson plots for proteins and nucleic acids are used

to detect anomalies in the mean intensity. These anomalies

may arise from ice rings or other issues (Morris et al., 2004).

Data strength and low-resolution completeness are also

analysed. The presence of anomalous signal is detected by

analysis of the measurability, a quantity expressing the frac-

tion of statistically significant Bijvoet differences in a data set

(Zwart, 2005). The native Patterson function is used to detect

the presence of pseudo-translational symmetry. A database-

derived empirical distribution of maximum peak heights is

used to assign significance to detected peaks in the Patterson

function.

A comprehensive automated twinning analysis is per-

formed. Twin laws are derived from first principles to facilitate

the identification of pseudo-merodehral cases. Amplitude and

intensity ratios, h|E2
� 1|i values, the L-statistic (Padilla &

Yeates, 2003) and N(Z) plots are derived from data cut to

the resolution limit suggested by the data-strength analysis.
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The removal of shells of data with relatively high noise content

greatly improves the automated interpretation of these

statistics. A Britton plot, H-test and a likelihood-derived

approach are used to estimate twin fractions when twin laws

are present. If a model has been supplied, an R versus R

(Lebedev et al., 2006) analysis is carried out. This type of

analysis is of particular use when dealing with pseudo-

symmetry, space-group problems and twinning (Zwart et al.,

2008).

To test for inconsistent indexing between different data sets,

a set of reindexing laws is derived from first principles given

the unit cells and space groups of the sample and reference

data sets. A correlation analysis suggests the most likely choice

of reindexing of the data. Analysis of the metric symmetry of

the unit cell provides a number of likely point groups. A

likelihood-inspired method is used to suggest the most likely

point group of the data. Subsequent analysis of systematic

absences in a likelihood framework ranks subsequent space-

group possibilities (details to be published).

3. Substructure determination, phasing and molecular
replacement

After ensuring that the diffraction data are sound and

understood, the next critical necessity for solving a structure is

the determination of phases using one of several strategies

(Adams, Afonine et al., 2009).

3.1. Substructure determination

The substructure-determination procedure implemented as

phenix.hyss (Hybrid Substructure Search; Grosse-Kunstleve &

Adams, 2003) combines the multi-trial dual-space recycling

approaches pioneered by Shake-and-Bake (Miller et al., 1994)

and later SHELXD (Sheldrick, 2008) with the use of the fast

translation function (Navaza & Vernoslova, 1995; Grosse-

Kunstleve & Brunger, 1999). The fast translation function is

the basis for a systematic search in the Patterson function

(performed in reciprocal space), in contrast to the stochastic

alternative of SHELXD (performed in direct space).

Phenix.hyss is the only substructure-determination program to

fully integrate automatic comparison of the substructures

found in multiple trials via a Euclidean Model Matching

procedure (part of the cctbx open-source libraries). This

allows phenix.hyss to detect if the same solution was found

multiple times and to terminate automatically if this is the

case. Extensive tests with a variety of SAD data sets (Grosse-

Kunstleve & Adams, 2003) have led to a parameterization of

the procedure that balances runtime considerations and the

likelihood that repeated solutions present the correct

substructure. In many cases the procedure finishes in seconds

if the substructure is detectable from the input data.

3.2. Phasing

Phaser, available in PHENIX as phenix.phaser, applies the

principle of maximum likelihood to solving crystal structures

by molecular replacement, by single-wavelength anomalous

diffraction (SAD) or by a combination of both. The likelihood

targets take proper account of the effects of different sources

of error (and, in the case of SAD phasing, their correlations)

and allow different sources of information to be combined. In

solving a molecular-replacement problem with a number of

different components, the information gained from a partial

solution increases the signal in the search for subsequent

components. Because the likelihood scores for different

models can be directly compared, decisions among models can

readily be made as part of automation strategies (discussed

below).

3.3. Noncrystallographic symmetry (NCS)

Noncrystallographic symmetry is an important feature of

many macromolecular crystals that can be used to greatly

improve electron-density maps. PHENIX has tools for the

identification of NCS and for using NCS and multiple crystal

forms of a macromolecule in phase improvement.

Phenix.find_ncs and phenix.simple_ncs_from_pdb are tools

for the identification of noncrystallographic symmetry in a

structure using information from a heavy-atom substructure

or an atomic model. Phenix.simple_ncs_from_pdb will identify

NCS and generate transformations from the chains in a model

in a PDB file. Phenix.find_ncs will identify NCS from either a

heavy-atom substructure (Terwilliger, 2002a) or the chains in a

PDB file and will then compare this NCS with the density in a

map to verify that the NCS is actually present.

Phenix.multi_crystal_average is a method for combining

information from several crystal forms of a structure. It is

especially well suited to cases where each crystal form has its

own NCS, adjusting phases for each crystal form so that all the

NCS copies in all crystals are as similar as possible.

NCS restraints should normally be applied in density

modification and model building in all cases except where

there is clear evidence that NCS is not present. In density

modification within PHENIX the presence of NCS is identi-

fied from the heavy-atom sites or from an atomic model if

available. The local correlation of density in NCS-related

locations is then used automatically to set variable restraints

on NCS symmetry in the map. In refinement, NCS symmetry is

applied through coordinate restraints, targeting the positions

of each NCS copy relative to those of the other NCS-related

chains. The default NCS restraints in PHENIX are very tight,

with targets of 0.05 Å r.m.s. At resolutions lower than about

2.5 Å these tight restraints on NCS should usually be applied.

At higher resolutions it may be appropriate to use looser

restraints or to remove them altogether. Additionally, if there

are segments of the chains that clearly do not obey the NCS

relationships they should be excluded from the NCS restraints.

Normally this is performed automatically, but it can also be

specified explicitly.

4. Model building, ligand fitting and nucleic acids

Key steps in the analysis of a macromolecular crystal structure

are building an initial core model, identification and fitting of
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ligands into the electron-density map and building an atomic

model for loop regions that are less well defined than the

majority of the structure. PHENIX has tools for rapid model

building of secondary structure and main-chain tracing

(phenix.find_helices_strands) and for the fitting of flexible

ligands (phenix.ligandfit) as well as for fitting a set of ligands

to a map (phenix.find_all_ligands) and for the identification

of ligands in a map (phenix.ligand_identification). PHENIX

additionally has a tool for the fitting of missing loops (phenix.

fit_loops). Validation tools are provided so that the models

produced can be validated at each step along the way.

4.1. Model building

Phenix.find_helices_strands will rapidly build a secondary-

structure-only model into a map or very rapidly trace the

polypeptide backbone of a model into a map. To build

secondary structure in a map, phenix.find_helices_strands

identifies �-helical regions and �-strand segments, models

idealized helices and strands into the corresponding density,

allowing for bending of the helices and strands, and assembles

these into a composite model. To very rapidly trace the main

chain in a map, phenix.find_helices_strands finds points along

ridgelines of high density where C� atoms might be located,

identifies pairs and then triplets of these C� atoms that have

density between the atoms and plausible geometry, constructs

all possible connections of these C� atoms into nonamers and

then identifies all the longest possible chains that can be made

by joining the nonamers. This process can build a C� model at

a rate of about 20 residues per second, yielding a backbone

model that can readily be interpreted visually or automatically

to evaluate the quality of the map that it is based on.

Phenix.fit_loops will fit missing loops in an atomic model.

It uses RESOLVE model building (Terwilliger, 2003a,b,c) to

extend the chain from either end where a loop is missing and

to connect the chains into a loop with the expected number of

residues.

4.2. Ligand fitting

Phenix.ligandfit is a tool for fitting a flexible ligand into

an electron-density map (Terwilliger et al., 2006). The key

approaches used are breaking the ligand into its component

rigid-body parts, finding where each of these can be placed

into density, tracing the remainder of the ligand based on the

positions of these core rigid-body parts and recombining the

best parts of multiple fits while scoring based on the fit to the

density.

Phenix.find_all_ligands is a tool for finding all the instances

of each of several ligands in an electron-density map.

Phenix.find_all_ligands finds the largest contiguous region of

unused density in a map and uses phenix.ligandfit to fit each

supplied ligand into that density. It then chooses the ligand

that has the highest real-space correlation to the density

(Terwilliger, Adams et al., 2007). It then repeats this process

until no ligands can be satisfactorily fitted into any remaining

density in the map.

Phenix.ligand_identification is a tool for identifying which

ligands are compatible with unknown electron density in a

map (Terwilliger, Adams et al., 2007). It can search using the

200 most common ligands from the PDB or from a user-

supplied list of ligands. Phenix.ligand_identification uses

phenix.ligandfit to fit each ligand to the map and identifies the

best-fitting ligand using the real-space correlation and surface

complementarity of the ligand and the atoms in the structure

surrounding the ligand-binding site.

4.3. RNA and DNA

In common with most macromolecular crystallographic

tools, PHENIX was originally developed with protein struc-

tures primarily in mind. Now that nucleic acids, and especially

RNA, are increasingly important in large biological structures,

the system is being modified in places where subtle differences

in procedure are needed rather than just the relevant libraries.

Model building in phenix.autobuild now has a preliminary

set of nucleic acid procedures that take advantage of the

relatively well determined phosphate and base positions, as

well as the preponderance of double helix, and that make use

of the RNA backbone conformers recently defined by the

RNA Ontology Consortium (Richardson et al., 2008). Nucleic

acid structures benefit significantly from torsion-angle refine-

ment, which has recently been added to the options in

phenix.refine. A principal problem in RNA models is getting

the ribose pucker correct, although it is known to consist

almost entirely of either C30-endo (which is commoner and

that found in the A-form helix) or C20-endo (Altona &

Sundaralingam, 1972). MolProbity uses the perpendicular

distance from the 30 phosphate to the line of the C10—N1/9

glycosidic bond as a reliable diagnostic of ribose pucker

(Davis et al., 2007; Chen et al., 2010). This same test has now

been built into phenix.refine to allow the use of pucker-specific

target parameters for bond lengths, angles and torsions

(Gelbin et al., 1996) rather than the uneasy compromise values

(Parkinson et al., 1996) used in most pucker-agnostic refine-

ment. Currently, if an incorrect pucker is diagnosed it must

usually be fixed by user rebuilding, for instance in Coot

(Emsley & Cowtan, 2004) or in RNABC (Wang et al., 2008). A

rebuilding functionality will probably be incorporated into

PHENIX soon, but in the meantime the refinement will now

correctly maintain the geometry of a C20-endo pucker once it

has been built and identified using conformation-specific

residue names.

4.4. Maps, models and avoiding bias

Phenix.refine (and the graphical tool phenix.create_maps)

can produce various types of maps, including anomalous

difference, maximum-likelihood weighted (p*mFobs �

q*DFmodel)exp(i�model) and regular (p*Fobs � q*Fmodel) �

exp(i�model), where p and q are any user-defined numbers,

filled and kick maps. The coefficients m and D of likelihood-

weighted maps (Read, 1986) are computed using test-set

reflections as described in Lunin & Skovoroda (1995) and

Urzhumtsev et al. (1996).
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Data incompleteness, especially systematic incompleteness,

can cause map distortions (Lunin, 1988; Tronrud, 1997). An

approach to remedying this problem is to replace (‘fill’)

missing observations with nonzero values. One can use

DFmodel (similarly to REFMAC; Murshudov et al., 1997) to

replace the missing Fobs or use hFobsi, where the Fobs are

averaged across a resolution bin around the missing Fobs value.

Based on a limited number of tests, both ‘filling’ schemes

produce similar results, reiterating the importance of phases.

However, it is important to keep in mind that by replacing

missing Fobs there is a risk of introducing bias and obviously

the more incomplete the data is the larger the risk. At present

it is advisable to use both maps simultaneously: filled and not

filled.

An average kick map (AK map; Gunčar et al., 2000; Turk,

2007; Pražnikar et al., 2009) is the result of the following

procedure. A large ensemble of structures is created where the

coordinates of each structure from the ensemble are all

randomly shaken. A map is then computed for each structure.

Finally, all maps are averaged to generate one AK map. An

AK map is expected to have less bias and less noise and to

enhance the existing signal and can potentially clarify some

initially bad densities.

A computationally intensive but powerful method of

creating a very low-bias map is to carry out iterative model

building and refinement while omitting one region of the map

from all calculations of structure factors (Terwilliger, Grosse-

Kunstleve, Afonine, Moriarty, Adams et al., 2008). The

phenix.autobuild iterative-build OMIT map procedure carries

this out automatically for either a single OMIT region or for

overlapping OMIT regions to create a composite iterative-

build OMIT map.

5. Model, and model-to-data, validation

The result of crystallographic structure determination is the

atomic model. There are three principal components in

assessing model quality: the covalent model geometry, the

model stereochemistry and the quality of fit between the

model and experimental data in both real space and in reci-

procal space. All three provide overall measures, and the first

two plus the real-space aspect of the third also provide checks

for local outliers, which give the best leverage for user inter-

vention to actively improve model accuracy (Arendall et al.,

2005). (Validation of the experimental data was described in x2

above.) PHENIX includes many individual tools for specific

aspects of validation, plus several systems that combine those

results into overall summaries. Validation is provided both for

user evaluation of the progress and results of a structure

solution and also to help inform the automated choices made

by other parts of the system.

Most aspects of the MolProbity model-validation tools

(Davis et al., 2007; Chen et al., 2010) have been adapted or

rewritten for integrated use within PHENIX and are pre-

sented to the user by the new GUI (x1.2). H atoms are added

by phenix.reduce, with optimization of entire local hydrogen-

bond networks, consideration of the first layer of crystallo-

graphic waters and optional correction of side-chain amide or

histidine 180� ‘flips’ (Word, Lovell, Richardson et al., 1999).

All-atom contacts (Word, Lovell, LaBean et al., 1999) are

calculated by phenix.probe, which provides the atomic overlap

information needed for the validation of serious all-atom

steric clashes and can also be visualized in Coot. For the

PHENIX GUI, the set of MolProbity-based tools provides

both overall model statistics, such as clashscore and percen-

tage of outliers, and detailed lists of the Ramachandran

(Lovell et al., 2003), rotamer (Lovell et al., 2000), C� deviation

(Lovell et al., 2003) and clash outliers. Command-line tools

are available for these validation methods: phenix.rotalyze,

phenix.ramalyze, phenix.cbetadev, phenix.clashscore, phenix.

reduce and phenix.probe. Additionally, phenix.validate_model,

which analyzes the deviations of bond lengths, bond angles,

planarity etc. from ideal library values, complements the

MolProbity torsional and atomic clash tools.

Phenix.real_space_correlation asserts the local model-to-

data correspondence by providing a quantitative measure of

how the atomic model fits the electron-density map at the

residue or atom level (depending on the resolution). Rapidly

obtaining a snapshot of global figures of merit for a crystallo-

graphic model and associated experimental data is a frequent

task that is performed at all stages of structure solution. This

task can be complicated for several reasons: the presence

of novel ligands or nonstandard residues in the PDB-format

(Berman et al., 2000) coordinate file, data collected from

twinned crystals, various reflection datafile formats, different

representation of atomic displacement parameters in the

presence of TLS (Schomaker & Trueblood, 1968), experi-

mental data type (X-ray and/or neutron), files with multiple

models and various formatting issues. Phenix.model_vs_data is

designed to automatically handle all these complications with

minimal user input (a PDB file and a reflection data file)

and provide a concise summary output. Phenix.polygon

(Urzhumtseva et al., 2009) is a graphical tool that is designed

to indicate the similarity of validation parameters, such as free

R value, for a particular structure compared with those

deposited in the PDB. This comparison is performed for all

other structures solved at similar resolution limits. The result is

presented graphically. Phenix.validation combines all of the

tools described above in one GUI, providing a single place for

assessing the results of structure determination.

5.1. Model and structure-factor manipulation and analysis

PHENIX has a range of tools for displaying, analyzing and

manipulating structure-factor and model information. Phenix.

mtz.dump and phenix.cif_as_mtz display and convert structure-

factor data. Phenix.print_sequence, phenix.pdb_atom_selection

and phenix.pdbtools display and manipulate coordinate files.

Phenix.tls is a tool for the extraction and manipulation of

TLS information. Using this tool, TLS matrices and selections

can be extracted from REFMAC- or PHENIX-formatted PDB

file headers and the total or residual atomic B factors can be

computed and output. Future functionality will include the
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complete analysis of TLS matrices and their graphical

visualization.

Phenix.get_cc_mtz_mtz and phenix.get_cc_mtz_pdb are

tools for analyzing the agreement between maps based on a

pair of MTZ files or between maps calculated from an MTZ

file and a PDB file. The key attributes of these tools are that

they automatically search all allowed origin shifts that might

relate the two maps and that they write out a modified version

of one of the MTZ files or of the PDB file, shifted to match the

other.

6. Structure refinement

Phenix.refine is the state-of-the-art crystallographic structure-

refinement engine of PHENIX. The foundational refinement

machinery is a combination of highly efficient programming

tools and new or rethought crystallographic algorithms.

Phenix.refine possesses an extensive set of tools that cover the

majority of refinement scenarios at any data resolution from

low to ultrahigh. Various reflection-data formats (for example,

CNS, MTZ and SHELX) are recognized automatically. The

input experimental data are checked for outliers (Read, 1999;

Zwart et al., 2005) and any reflections identified as such are

excluded from the refinement calculations. Twinning can also

be taken into account by providing a twin-law operator, which

can be obtained using phenix.xtriage. Both X-ray and/or

neutron diffraction data can be used and an option for joint

XN refinement is available (simultaneous refinement against

X-ray and neutron data; Adams, Mustyakimov et al., 2009).

Each refinement run begins with robust mask-based bulk-

solvent correction and anisotropic scaling (Afonine et al.,

2005). Tools such as efficient rigid-body refinement (multiple-

zones algorithm; Afonine et al., 2009), simulated-annealing

refinement (Brünger et al., 1987) in Cartesian or torsion-angle

space (Grosse-Kunstleve et al., 2009), automatic NCS detec-

tion and its use as restraints in refinement are important at low

resolution and in the initial stages of refinement. A broad

range of atomic displacement parameterizations are available,

including grouped isotropic, constrained anisotropic (TLS)

and individual atomic isotropic or anisotropic, allowing effi-

cient modelling of atomic displacement parameters at any

resolution. Occupancy refinement (grouped, individual, group

constrained for alternative conformations or any mixture) can

be performed for any user-defined atoms. Atoms in alternative

conformations are recognized automatically based on altLoc

identifiers in the input PDB file and their occupancies are

refined by default. Ordered solvent (water) model updating is

integrated into the refinement process.

The availability of ultrahigh-resolution data makes it

possible to visualize the residual density arising from bonding

effects; phenix.refine employs a novel interatomic scatterers

model (Afonine et al., 2007) to adequately account for these

features. A flexible parameterization of H atoms allows their

use at any resolution from subatomic (where their parameters

can be refined individually) to low resolution (where a riding

model is used). Refinement can be performed using a variety

of refinement target functions, including maximum likelihood,

maximum likelihood with experimental phase information and

amplitude least squares. The refinement of coordinates can be

performed in real or reciprocal space (allowing dual-space

refinement). Novel ligands can easily be included in refine-

ment by providing a corresponding CIF file as input (the CIF

file can be automatically created using phenix.ready_set).

Manual fixing of amino-acid side-chain rotamers can be

time-consuming, especially for large structures. Although the

use of simulated-annealing refinement increases the conver-

gence radius, it can still fail to fit incorrectly modelled side

chains into the correct density. Phenix.refine has an option for

automatic selection of the best rotamer based on a rotamer

library (Lovell et al., 2000) and optimal fit into the density

(details to be published elsewhere). Furthermore, coupling

real-space refinement with the built-in rotamer library and

available MolProbity tools allows the automated identification

and robust correction of common systematic errors involving

backward-fit conformations for Leu, Thr, Val, Ile and Arg side

chains, as developed and tested in the Autofix method (Headd

et al., 2009).

Phenix.refine allows multi-step complex refinement proto-

cols in which most of the available refinement strategies can be

combined with each other and applied to any selected part of

the model. For example, a run of phenix.refine may perform

rigid-body refinement, simulated annealing, individual and

grouped B factors combined with TLS refinement, constrained

occupancy refinement and automatic water picking.

The output of phenix.refine includes various maps

(maximum-likelihood weighted, kicked, incompleteness

corrected, anomalous difference and those with any user-

defined coefficients), complete model and data statistics and

PDB file with a formatted REMARK 3 header ready for PDB

deposition. The phenix.refine GUI is integrated with Coot and

PyMOL, allowing seamless visual analysis of the refined

model and associated maps.

Phenix.refine is tightly integrated with other PHENIX

components, making structure solution, building and refine-

ment a one-step process (for example, in the AutoMR and

AutoBuild wizards). It is routinely tested by automatic re-

refinement of all models in the PDB for which the experi-

mental data are available.

6.1. Ligand-coordinate and restraint-geometry generation

The electronic Ligand Builder and Optimization Builder

(eLBOW; Moriarty et al., 2009) is a suite of tools designed for

the reliable generation of Cartesian coordinates and geometry

restraints for both novel and known ligands. In line with the

rest of the PHENIX package, the eLBOW modules are

written in Python, with the numerically intensive portions of

the code written in C++. eLBOW is a flexible platform for

converting a majority of common chemical inputs to optimized

three-dimensional coordinates and geometry restraints for

refinement. Ligand geometries can be minimized using the

semi-empirical AM1 quantum-chemical method (Stewart,

2004), a numerically efficient and chemically accurate tech-
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nique for the class of molecules commonly complexed with or

bound to proteins.

In addition, a graphical user interface for editing geometry

restraints and simple geometry manipulation of ligands has

been developed. The Restraints Editor, Especially Ligands

(REEL) removes the tedium of manually editing a restraints

file by providing a number of commonly performed actions via

pull-down menus and other interactive features. The effect of

changes in the restraints can be immediately reflected in the

molecule view to provide user feedback.

A tool that uses many of the features of eLBOW to quickly

and easier prepare a protein model for refinement is known as

ReadySet! The flexibility of the Python interface is exemplified

by the use of Reduce, eLBOW and several smaller portions of

the cctbx toolkit to add H and/or D atoms to the model,

ligands and water and to generate metal-coordination files and

geometry restraints for unknown ligands. The files required

for covalently bound ligands are also generated.

7. Integrated structure determination

7.1. Why automation?

Automation has dramatically changed macromolecular

crystallography over the past decade, both by greatly speeding

up the process of structure solution, model building and

refinement and by bringing the tools for structure determi-

nation to a much wider group of scientists. As automation

becomes increasingly comprehensive, it will allow users to test

many more possibilities for structure determination, will allow

improved estimation of uncertainties in the final structures

and will allow the determination of ever more complex and

difficult structures.

The PHENIX environment has been developed with

automation as a key and defining feature. Each tool within

PHENIX can seamlessly and nearly effortlessly be incorpo-

rated as part of any other tool or process in PHENIX. This

means that very complex tasks can be built up from well tested

and characterized tools and that tools and higher-level

methods can be re-used in many different contexts. With a full

automatic regression testing system as an integral part of the

PHENIX environment, all these tasks and high-level methods

are tested daily to ensure the integrity of the entire PHENIX

system.

7.2. Automated structure solution

PHENIX has fully integrated structure-solution capability

for both experimental phasing (MAD, SAD, MIR and com-

binations of these), carried out by phenix.autosol, and for

molecular replacement, performed by phenix.automr. Each of

these automated procedures feeds directly into the iterative

model building, density modification and refinement of

phenix.autobuild.

Phenix.autosol is designed to allow complete automation

of experimental phasing while allowing a high degree of

flexibility for advanced users. Beginning with structure-factor

amplitudes and the sequence of the macromolecule, phenix.

autosol uses phenix.solve (Terwilliger & Berendzen, 1999) to

scale all data sets, phenix.xtriage (Zwart et al., 2005) to analyze

the data for twinning and to correct any anisotropy in the data

and phenix.hyss (Grosse-Kunstleve & Adams, 2003) to find

potential heavy-atom or anomalously scattering atoms.

Phenix.autosol carries out experimental phasing with

phenix.phaser (McCoy et al., 2004, 2007) or phenix.solve

(Terwilliger & Berendzen, 1999), density modification with

phenix.resolve (Terwilliger, 1999) and preliminary model

building using the methods in phenix.autobuild (Terwilliger,

Grosse-Kunstleve, Afonine, Moriarty, Zwart et al., 2008).

A key step in automated structure solution is the identifi-

cation of which of several possible space-group and heavy-

atom or anomalously scattering-atom substructures is correct.

Phenix.autosol uses a Bayesian scoring algorithm based on

analysis of the experimental electron-density maps to identify

which substructures lead to the best maps (Terwilliger et al.,

2009). The main features of the maps that are used in this

evaluation are the skewness of the electron density (non-

Gaussian histogram of density with more density in the posi-

tive tail than the negative tail) and the correlation of local

r.m.s. density (large contiguous regions of high variation

where the molecule is located and separate large contiguous

regions of low variation where the solvent is located).

Phenix.autosol is highly flexible, allowing any combination

of experimental data, such as MAD + SIRAS or several SAD

data sets. Although it is fully automated, the user can control

nearly all aspects of the operation of the procedure, including

the scoring criteria and decisions about how certain phenix.

autosol should be that the correct solution is contained in the

current lists of solutions.

Phenix.autosol can carry out phasing using a combination of

experimental SAD data and molecular-replacement informa-

tion. If a molecular-replacement model is available, phenix.

autosol will use phenix.phaser (McCoy et al., 2004, 2007) to

complete the anomalous substructure iteratively by con-

structing log-likelihood gradient maps for the anomalous

scatterers based on the model of the non-anomalous structure

and any anomalous scatterers that have already been found.

The anomalous substructure is then used along with the model

to calculate phases with phenix.phaser.

Phenix.automr carries out automated likelihood-based

molecular replacement using phenix.phaser (Read, 2001;

McCoy et al., 2005, 2007; McCoy, 2007). The procedure is

highly automated, allowing several copies of each of several

components to be placed in a single run, which can also test

different possible choices of space group. If there are alter-

native choices of model for a component, the molecular-

replacement calculation can try each of them in turn or

combine them as a statistically weighted ensemble. Although

the evaluation of the likelihood targets is slow (Read, 2001),

the use of fast approximations for the rotation search (Storoni

et al., 2004) and the translation search (McCoy et al., 2005)

gives run times that are competitive with traditional

Patterson-based methods. Likelihood has been demonstrated

to be more sensitive to the correct solution, particularly in

difficult cases (Read, 2001). When there are several copies or
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several components to place, the ability of the likelihood

functions to take advantage of preliminary partial solutions

can provide a crucial increase in the signal.

7.3. Iterative model building, density modification and
refinement

Phenix.autobuild is a highly integrated and automated

procedure for model building and model improvement

through iterative model building, density modification and

refinement. Phenix.autobuild uses phenix.resolve (Terwilliger,

2003a,b) to carry out model building, model extension, model

assembly, loop fitting and building outside existing models. It

further uses phenix.resolve to improve electron-density maps

with statistical density modification, including information

from the newly built models as well as that obtained from

experiment (e.g. phenix.autosol), from NCS (Terwilliger,

2002b) and from other expected features of electron-density

maps such as a flat solvent (Wang, 1985), the presence of

secondary-structural features (Terwilliger, 2001) and the

presence of local patterns of density characteristic of macro-

molecules (Terwilliger, 2003c). To reduce model bias in

the procedure, prime-and-switch phasing can also be used

(Terwilliger, 2004). Phenix.autobuild uses phenix.refine

(Afonine et al., 2005) throughout this process to improve the

quality of the models that are built.

Phenix.autobuild provides two complementary approaches

to model building. For cases in which no model or only a

preliminary model has been built, phenix.autobuild will con-

struct a new model considering the main chain of any supplied

models as potential coordinates. In cases where a nearly final

model is available, phenix.autobuild can apply a rebuild-in-

place approach in which the polypeptide chain is rebuilt a few

residues at a time without changing the register or the overall

features of the model.

The rebuild-in-place approach in phenix.autobuild provides

a powerful method for the assessment of uncertainties in an

atomic model by repetitive rebuilding of the model using

different random seeds for each iteration (Terwilliger, Grosse-

Kunstleve et al., 2007). The variability in the coordinates of

each atom in the ensemble that is created is a lower bound on

the uncertainty of the position of that atom.

8. Conclusions

Advances in computational methods and algorithms have

made it possible to automate the solution of many structures

with PHENIX. However, many challenges still exist. In

particular, the development of automated methods that can be

applied at low resolution (worse than 3.0 Å) remains a

priority. In this resolution range there are typically too few

experimental data to uniquely define the macromolecular

structure for automated ab initio model building. Thus,

methods are required that rely on prior knowledge from

existing macromolecular structures to permit productive

automated data interpretation. These methods will need to be

developed and applied for all stages of structure solution and

tightly integrated to maximize the information extracted from

the experimental data.
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